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The objective of the work is to investigate the classi¯cation of di®erent movements based on the
surface electromyogram (SEMG) pattern recognition method. The testing was conducted for four
arm movements using several experiments with arti¯cial neural network classi¯cation scheme. Six
time domain features were extracted and consequently classi¯cation was implemented using back
propagation neural classi¯er (BPNC). Further, the realization of projected network was veri¯ed
using cross validation (CV) process; hence ANOVA algorithm was carried out. Performance of
the network is analyzed by considering mean square error (MSE) value. A comparison was
performed between the extracted features and back propagation network results reported in the
literature. The concurrent result indicates the signi¯cance of proposed network with classi¯cation
accuracy (CA) of 100% recorded from two channels, while analysis of variance technique helps in
investigating the e®ectiveness of classi¯ed signal for recognition tasks.

Keywords: ANN; SEMG; arm recognition; statistics; classi¯cation; RMS; upper arm activities.

1. Introduction

The technology of surface electromyogram (SEMG)
recording is relatively new and has been used in
various aspects of biomedical applications and can be
derived from muscles using single or multiple chan-
nels.1 Since SEMG signal is deterministic and ran-
dom in nature2 so its direct use is not recommended in

prosthetic development. In the last two decades3–10 it
has become successfully practical to classify these
signals recorded from forearm muscles. However, the
processing and recognition of signals recorded from
upper arm muscles is an open research since last de-
cade. The interesting issues in classifying upper limb
signals are to investigate, what are the activities to be
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performed against multiple electrode sites; signal
correlation within the group (WG) and between the
group (BG) and ¯nally what patterns could be seg-
regated before applying classi¯cation.

With computers and software becoming more
powerful tools to process complex algorithms on
large data at high speed, SEMG features can be
computed in numerical form from a ¯nite length
time interval which changes as a function of time,
i.e., a voltage or a frequency. There are still lim-
itations in the detection and characterization of
existing nonlinearities in the SEMG signal, estima-
tion of the phase, acquiring exact information due
to derivation from normality.11–17 Further, SEMG
signals re°ect the nonlinear characteristics nature,
so it becomes necessary to recognize motion com-
mands before controlling the prosthetic and hence
arti¯cial neural network plays a vital role to this
end as it makes the classi¯cation of SEMG signals
possible.18

Recent research has reported on the use of single
electrode sensor channel surface EMG signals rather
than using multichannel sensors. However, this
entails the problem that when using EMG to iden-
tify complex actions it is necessary to map the EMG
signals corresponding to the contractions of di®er-
ent muscles.19

Since the success of a myoelectric control scheme
depends largely on the classi¯cation accuracy (CA)
hence this concept has been used for the develop-
ment of myoelectric prosthesis control systems
obtained by classi¯cation of EMG signals. Hu and
Nenov20 compared the performance of two feature
extraction methods for multichannel EMG based
arm movement classi¯cation. Tsenov et al.21 also
utilized two EMG electrodes to detect four ¯nger
movements using time domain features and neural
networks classi¯ers achieving nearly 93% accuracy.
Choi and Kim22 investigated to design an assistive

real time system for the upper limb disabled.
Wojtczak et al.23 used arti¯cial neural networks to
classify EMG signals to control multifunction
prosthesis. Finger motions discrimination was em-
phasized most. Cipriani et al.24 reports real-time
experiments on both able-bodied and amputees
participants.

This issue is still a part of open research
throughout the world for the researchers, since there
is no well recognized outcome measure used
throughout the world for the classi¯cation purpose.
During study, four independent kinds of commonly
used arm movements were selected. In addition, two
arm muscle locations were selected for detecting the
meaningful SEMG signals.

The whole process has been divided into four
steps:

(i) Signal detection and it's presentation;
(ii) Feature extraction;
(iii) Recognition of patterns using neural network;
(iv) Cross validation (CV) using analysis of variance.

2. Material and Methods

Since many previous studies have presented multi-
ple SEMG electrode con¯gurations for achieving
better (CA) of myoelectric signals,18 so, the objec-
tive of this work is to classify upper arm movements
recorded from two SEMG channels using back
propagation neural classi¯er (BPNC), and to eval-
uate the feasibility of recorded myoelectric signals
using ANOVA technique.

The block diagram of the proposed study is
shown in Fig. 1, which is composed of SEMG signal
detection, feature extraction, neural network
classi¯cation and e®ectiveness of classi¯ed data
for recognition of arm gestures using ANOVA. The
processing of data consists of three major stages: At

SEMG detec�on 
using DAQ card

Signal 
Condi�oning

Data segmenta�on 
and feature 
extrac�on

Classifier/ cross 
classifica�on using 

ANOVA

x1 

x2 

Feature vectors

Comparison with 
previous studies

Fig. 1. Schematic of upper arm classi¯cation.
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¯rst, arm motions are sensed using noninvasive
electrodes, next in the second step; the activities of
the individual muscles are decomposed and classi-
¯ed by back propagation neural network (BPNN)
classi¯er. Finally, in last step, the particular arm
activities are cross classi¯ed using repeated factorial
analysis of variance technique.

2.1. Subject's detail

The detail of volunteers who participated in study;
acquisition setup to measure the SEMG signals;
sampling rate; signal ¯ltering; signal processing
procedure had been discussed in author's previous
work.1,13,17 An epoch of 3s from each muscle point
was used while recording SEMG signals from upper
arm residual muscles; namely biceps and triceps
brachii, respectively. A total of four activities were
performed on two muscle points independently. The
participants were asked to perform one category of
movement 3 times in each trail. A rest time of 5 min
were allowed in between to minimize the potential
e®ects of mental and muscle fatigue.

3. Computation of Features

For the prosthetic devices the controllers based on
the available technologies are complex and bulky.
Since various mathematical and arti¯cial intelli-
gence algorithms have made it practical to develop
advanced analysis techniques, so six parameters
were evaluated for carrying out the interpretation of
SEMG signal task e±ciently. The calculations
parameters to be employed for classi¯cation task
are shown in Table 1.

3.1. Pattern classi¯cation

Arti¯cial neural networks are built from single
neurons grouped in layers. Neurons from one layer
are connected to every neuron in another layer. The
structure of the arti¯cial neural network and neuron
model is presented in Fig. 2. The neural classi¯er
application was built based on a multithreaded
structure in which three main parts can be distin-
guished: Data acquisition with the highest priority,
the analysis and user interface with the lowest
priority.

The architecture of neural network consisted of
three layers: input, hidden and output as shown in
Fig. 2.

The CA of designed Network actually depends on
the feature set, network structure and training al-
gorithm. Steps for improving network structure and
over¯tting, input data is divided as; 75% for train-
ing and 15% for validation and 10% for testing. The
learning process for neuron model (6:3:1) for clas-
si¯cation is to be carried out as follows:

. All participated subject attempts to make four
independent upper arm movement;

. Since there is no general rule for computing
number of neurons in hidden layer, so this num-
bers should be small to simplify the computation
and to reduce the risk of over¯tting;

. Patterns received from controlled signals are fed
to neural network;

. Network reiterates the procedure in exercising
SEMG patterns from arm movement for in-
creased network performance with minimum
MSE;

. Trained network is evaluated for classifying upper
arm movements.

3.2. One way analysis of variance

statistical technique

Since parameter \RMS" provides the higher per-
formance in detection of arm movements, so has

Table 1. Calculated SEMG parameters.

Sr. No. Parameters De¯nitions

1 Root mean
square

Root mean square value of an epoch

2 Standard
deviation

Variation or dispersion from the
average value

3 Variance Measure of the EMG signal's power
4 Simple square

integral
Summation of the square values of

the amplitude signal samples
5 Integrated

EMG
Summation of absolute values of the

EMG signal amplitude
6 Power Relationship between total electrical

energy output of SEMG signal and
muscle contraction Fig. 2. Block diagram for Arti¯cial neuron model (6:3:1) for

classi¯cation.
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been applied to interpret the e®ectiveness of recor-
ded signal. The block diagram of ANOVA model is
presented in Fig. 3. The major points in the evalu-
ation of technique consist of following issues:

(1) Four independent Groups (G1 – G4);

(2) Seven amputed volunteers for each group;
(3) Two upper arm muscle locations, biceps and

triceps brachii;

4. Result

As SEMG is time and force dependent signals, so
signal's interpretation becomes necessary before
de¯ning the characteristic properties. The SEMG
signals were segmented by the length of 3000 sam-
ples and also the amplitudes of segmented signals
were normalized for avoiding the e®ect of di®erent
amplitude scale. The block diagram for the entire
system including bipolar electrode con¯guration,
ampli¯ers, DAQ are as depicted in Fig. 4.

A simulated Labview soft scope aided code was
designed and then executed for conducting SEMG
signal force relationship. Tables 2 and 3 tabulated
the average comparison of extracted parameters
being analyzed from biceps and triceps muscles for
participated volunteers.

These time domain features has been used in
converting recorded data into amplitude envelope,
making it easier to view and consequently to make
concerned decision. Figures 5 and 6 helps in

Start ANOVA

Compute data within 
the group (SSW)

Compute data between 
the groups (SSB)

Compute data for total 
groups (SST)

Compute (SS);
(dof) and;

(MS)

Calculate F ra�o

Is 
F > fc

Es�mate classifica�on 
accuracy

NO

Yes

Errors in 
recorded data

Fig. 3. Block diagram for analysis of variance steps.

DAQ Card

Power Supply

Noninvasive 
electrode

Instrumenta�on 
amplifier

Gain amplifier

Fig. 4. Figure of the entire testing system.

Table 2. Feature extracted values for biceps muscle.

Biceps muscle

Activities RMS VAR SSI (/1000) SD P IEMG (/1000)

elbow extension (ee) 0.15 0.02 31 0.10 5 191
elbow °exion (ef) 0.57 0.22 558 0.45 86 1016
abduction (abd) 0.18 0.03 49 0.12 6 277
adduction (add) 0.15 0.02 29 0.10 5 215
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evaluating the e®ectiveness of recorded data for
biceps/triceps movements, respectively and would
play a vital role in segregating recorded SEMG data
prior to conduct ANN and ANOVA classi¯cation.

4.1. Results using ANN classi¯er

Back propagation supervised learning algorithm has
been used for classifying motion patterns available
from di®erent four types of activities since it helps
in minimizing MSE with improved performance.
Further, subjects were trained thoroughly before
performing four arm activities for obtaining e±cient
training sets. Six statistical time and time-frequency
based features (Tables 2 and 3) from SEMG signals
are fed as inputs to neural network.

The statistical analyses in terms of mean square
error (MSE) were investigated for verifying the
response and performance of the network. The
network performance is best with lowest MSE, and
is 0.04242 and 0.0000001 for train and then
retraining stage. During experiment it was found
that response time and complexity of the network
was optimum for 3 neurons in the hidden layer. The
training, validation, testing and overall classi¯ca-
tion performance of the proposed network is depic-
ted in Fig. 7. From confusion matrix, the results
occurring in diagonal form are the correct classi¯-
cation rates while the results outside the diagonal
are the errors. The average of MSE value with
standard deviation error for the four upper arms is
shown in Fig. 8. If one considers the class 2, `21'
numbers of upper arm movements are correctly
classi¯ed which means the average classi¯cation for
this class is 100% against total subjects and is

Table 3. Feature extracted values for triceps muscle.

Triceps muscle

Activities RMS VAR SSI SD P IEMG

elbow extension (ee) 0.16 0.02 27 0.10 8 210
elbow °exion (ef) 0.22 0.04 81 0.15 18 340
abduction (abd) 0.24 0.05 124 0.18 17 444
adduction (add) 0.41 0.10 268 0.29 43 661

0
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Fig. 5. Comparison of Vrms values for bicep movements.
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Fig. 6. Comparison of Vrms values for tricep movements.
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Fig. 7. Neural network based confusion matrix.
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97.50% from average of participated subjects
(Table 4), respectively.

4.2. Results using statistical technique

Since CV is often used for comparing two or more
learningmodels to estimate whichmodel performs best
for the classi¯cation purposes, hence repeated factorial
analysis of variance algorithm has been implemented.

The basic principle is to test for di®erences
among the means of the populations by examining
the amount of variation within each of these sam-
ples, relative to the amount of variations between
the samples. Eventually one has to make two esti-
mates of population variance, i.e., one based on
between samples variance and other is based on
within samples variance. Finally, two aforesaid
estimates of population variances are compared
against F-test as follows:

F ¼ Estimate of variance between samples=
Estimate of variance within samples.

The standard one-way ANOVA hypothesis tests
are valid under the following assumptions:

(1) The treatment populations must be normal,
(2) The treatment populations must all have the

same variance.

A total of 15 volunteers participated in this part of
study. The overall statistical results for the di®erent
activities on biceps brachii and triceps brachii
muscles have been tabulated in Tables 5 and 6.
From the tables, it was concluded that there was
signi¯cant di®erence in amplitude gain across dif-
ferent motions as F (3, 24) ¼ 25.78, p < 0:05 and F
(3, 24) ¼ 9.33, p < 0:05 for two independent mus-
cles against critical value (3.01). Since F ratio is
greater than critical value (fc), so it was observed
that there exists signi¯cant di®erence between the
groups (SSB) than within groups (SSW). The sta-
tistical results con¯rm the dependency of multiple
arm movements on de¯ned locations in terms of
amplitude estimation.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

1 2 3 4 5 average
Subjects

Fig. 8. Average mean square value (%) with SD for the four
upper arm movements.

Table 4. List of individual classi¯ca-
tion accuracies with MSE for partici-
pated subjects.

SUBJECTS CA (100%) MSE

1 87.5 1.23E-01
2 100 1.07E-07
3 100 1.42E-01
4 100 3.80E-08
5 100 1.10E-07

Average 97.50 5.30E-02

Table 5. ANOVA statistics for four di®erent arm movements on biceps muscle.

Group No. Criterion Mean (x-mean)2 P F ratio Critical value

1 Fisher algorithm 0.62 0.01 0.0000011 25.78 3.01
2 Fisher algorithm 2.78 0.07352 0.0000011
3 Fisher algorithm 0.83 0.00472 0.0000011
4 Fisher algorithm 0.69 0.00868 0.0000011

Table 6. ANOVA statistics for four di®erent arm movements on triceps muscle.

Group No. Criterion Mean (x-mean)2 P F ratio Critical value

1 Fisher algorithm 0.70 0.0252 0.00028 9.33 3.01
2 Fisher algorithm 1.03 0.0665 0.00028
3 Fisher algorithm 1.33 0.0385 0.00028
4 Fisher algorithm 2.01 0.0603 0.00028
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5. Previous Work

The main issues to be noted while comparing the
results against previous studies are electrode place-
ment sites, acquisition set ups; subject protocols and
the ways of presenting recoded data; and there is
always nonuniformity in these parameters hence it is
hard to compare results. However, trending infor-
mation could be helpful in analyzing the e®ectiveness
of one's recorded data.25 The results of previous
studies have been compared (Table 7).

6. Discussion

Since main interest is to investigate the role of
muscle ¯ber during voluntary contractions, the es-
timation of variation in the amplitude of SEMG
needs to be quanti¯ed for interpretation of signals,
so analytical features were extracted and evaluated
before classifying arm movements using ANN clas-
si¯er. Dual channel SEMG work class was carried
out and experiments being conducted to four dif-
ferent upper arm movements collected from total
subjects proved the feasibility of the proposed net-
work with 100% of CA using back propagation
neural network. The proposed neural network also
helped in reducing the time required for classi¯ca-
tion. Since, each recorded data set has one single
pattern, so it becomes essential to separate and
classify these patterns. Hence proposed algorithm
classi¯ed four movements signi¯cantly with 100%
accuracy and 0.04242 mean square value. Next, one
way repeated factorial analysis of variance tech-
nique helps in segregating di®erent operations that
could be easily realized by prosthetic devices.

7. Conclusion

From Figs. (5) and (6), one can easily conclude that
elbow °exion and adduction movements against
biceps and triceps muscle location are the best one

and can be used for designing prosthetic device.
Further neural network with back propagation al-
gorithm was trained with extracted features to
classify arm movements. The result suggests that
employing ¯rst and second trail; the optimized
neural network can signi¯cantly classify the SEMG
signals with average classi¯cation rate of 100%.
After comparing with existing methods, the
proposed method exhibited higher CA and more
robustness. Finally, it is concluded that neural
network algorithm makes recognition more e®ective
and e±cient for classi¯cation purposes while sta-
tistical technique of ANOVA, additionally is a sig-
ni¯cant approach to report the e®ectiveness of
recorded data. In future studies, more powerful
algorithms will be applied for the interpretation of
upper limb signals.
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